Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Vet Microbiol ; 291: 110013, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364468

ABSTRACT

Potassium diformate (KDF) is a kind of formate, which possesses the advantages of antimicrobial activity, growth promotion and preventing diarrhea in weaned piglets. However, the researches of KDF in animal production mostly focused on apparent indexes such as growth performance and the mechanisms of KDF on intestinal health have not been reported. Thus, porcine small intestinal epithelial cells (IPEC-J2) infected with Enterohemorrhagic Escherichia coli (EHEC) was used to investigate the role of KDF on alleviating intestinal inflammation in this study. The 0.125 mg/mL KDF treated IPEC-J2 cells for 6 h and IPEC-J2 cells challenged with 5 × 107 CFU/mL EHEC for 4 h were confirmed as the optimum concentration and time for the following experiment. The subsequent experiment was divided into four groups: control group (CON), EHEC group, KDF group, KDF+EHEC group. The results showed that KDF increased the cell viability and the gene expression levels of SGLT3 and TGF-ß, while decreased the content of IL-1ß compared with the CON group. The cell viability and the gene expressions of SGLT1, SGLT3, GLUT2, Claudin-1, Occludin and TGF-ß, and the protein expression of ZO-1 in EHEC group were lower than those in CON group, whereas the gene expressions of IL-1ß, TNF, IL-8 and TLR4, and the level of phosphorylation NF-кB protein were increased. Pretreatment with KDF reduced the content of IgM and IL-1ß, the gene expressions of IL-1ß, TNF, IL-8 and TLR4 and the level of phosphorylation NF-кB protein, and increased the gene expression of TGF-ß and the protein expression of Occludin in IPEC-J2 cells infected EHEC. In conclusion, 0.125 mg/mL KDF on IPEC-J2 cells for 6 h had the beneficial effects on ameliorating the intestinal inflammation because of reduced pro-inflammatory cytokines and enhanced anti-inflammatory cytokines through regulating NF-кB signaling pathway under the EHEC challenge.


Subject(s)
Enterohemorrhagic Escherichia coli , Swine Diseases , Animals , Swine , Occludin/genetics , Occludin/metabolism , Enterohemorrhagic Escherichia coli/metabolism , Interleukin-8/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4 , Cell Line , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/veterinary , Cytokines/genetics , Cytokines/metabolism , Epithelial Cells/metabolism , Transforming Growth Factor beta/metabolism , Intestinal Mucosa , Swine Diseases/drug therapy , Swine Diseases/metabolism
2.
Nutrients ; 15(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37960147

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers and is the second leading cause of cancer-related death in the world. Due to the westernization of diets, young patients with CRC are often diagnosed at advanced stages with an associated poor prognosis. Improved lifestyle choices are one way to minimize CRC risk. Among diet choices is the inclusion of bee propolis, long recognized as a health supplement with anticancer activities. Understanding the effect of propolis on the gut environment is worth exploring, and especially its associated intratumoral immune changes and its anticancer effect on the occurrence and development of CRC. In this study, early stage CRC was induced with 1,2-dimethylhydrazine (DMH) and dextran sulfate sodium (DSS) for one month in an animal model, without and with propolis administration. The phenotypes of early stage CRC were evaluated by X-ray microcomputed tomography and histologic examination. The gut immunity of the tumor microenvironment was assessed by immunohistochemical staining for tumor-infiltrating lymphocytes (TILs) and further comparative quantification. We found that the characteristics of the CRC mice, including the body weight, tumor loading, and tumor dimensions, were significantly changed due to propolis administration. With further propolis administration, the CRC tissues of DMH/DSS-treated mice showed decreased cytokeratin 20 levels, a marker for intestinal epithelium differentiation. Additionally, the signal intensity and density of CD3+ and CD4+ TILs were significantly increased and fewer forkhead box protein P3 (FOXP3) lymphocytes were observed in the lamina propria. In conclusion, we found that propolis, a natural supplement, potentially prevented CRC progression by increasing CD3+ and CD4+ TILs and reducing FOXP3 lymphocytes in the tumor microenvironment of early stage CRC. Our study could suggest a promising role for propolis in complementary medicine as a food supplement to decrease or prevent CRC progression.


Subject(s)
Colorectal Neoplasms , Propolis , Humans , Mice , Animals , Colorectal Neoplasms/pathology , Neoplasm Staging , Propolis/pharmacology , Propolis/therapeutic use , Tumor Microenvironment , X-Ray Microtomography , Forkhead Transcription Factors/metabolism
3.
EBioMedicine ; 98: 104858, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925777

ABSTRACT

BACKGROUND: Nanopore metagenomics has been used for infectious disease diagnosis for bacterial pathogens. However, this technology currently lacks comprehensive performance studies in clinical settings for simultaneous detection of bacteria, fungi, and viruses. METHODS: We developed a dual-process of Nanopore sequencing for one sample, with unbiased metagenomics in Meta process and target enrichment in Panel process (Nanopore Meta-Panel process, NanoMP) and prospectively enrolled 450 respiratory specimens from multiple centers. The filter system of pathogen detection was established with machine learning and receiver operator characteristic (ROC) curve to optimize the detection accuracy based on orthogonal test of 21 species. Antimicrobial resistance (AMR) genes were identified based on the Comprehensive Antibiotic Resistance Database (CARD) and single-nucleotide polymorphism matrix. FINDINGS: Our approach showed high sensitivity in Meta process, with 82.9%, 88.7%, and 75.0% for bacteria, fungi (except Aspergillus), and Mycobacterium tuberculosis groups, respectively. Moreover, target amplification improved the sensitivity of virus (>80.0% vs. 39.4%) and Aspergillus (81.8% vs. 42.3%) groups in Panel process compared with Meta process. Overall, NanoMP achieved 80.2% sensitivity and 98.8% specificity compared with the composite reference standard, and we were able to accurately detect AMR genes including blaKPC-2, blaOXA-23 and mecA and distinguish their parent organisms in patients with mixed infections. INTERPRETATION: We combined metagenomic and enriched Nanopore sequencing for one sample in parallel. Our NanoMP approach simultaneously covered bacteria, viruses and fungi in respiratory specimens and demonstrated good diagnostic performance in real clinical settings. FUNDING: National Key Research and Development Program of China and National Natural Science Foundation of China.


Subject(s)
Nanopore Sequencing , Respiratory Tract Infections , Humans , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/genetics , Bacteria/genetics , Metagenome , China , High-Throughput Nucleotide Sequencing , Metagenomics
4.
Sci Bull (Beijing) ; 68(21): 2658-2670, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37821268

ABSTRACT

Although hypervirulent Klebsiella pneumoniae (hvKP) can produce community-acquired infections that are fatal in young and adult hosts, such as pyogenic liver abscess, endophthalmitis, and meningitis, it has historically been susceptible to antibiotics. Carbapenem-resistant K. pneumoniae (CRKP) is usually associated with urinary tract infections acquired in hospitals, pneumonia, septicemias, and soft tissue infections. Outbreaks and quick spread of CRKP in hospitals have become a major challenge in public health due to the lack of effective antibacterial treatments. In the early stages of K. pneumoniae development, HvKP and CRKP first appear as distinct routes. However, the lines dividing the two pathotypes are vanishing currently, and the advent of carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) is devastating as it is simultaneously multidrug-resistant, hypervirulent, and highly transmissible. Most CR-hvKP cases have been reported in Asian clinical settings, particularly in China. Typically, CR-hvKP develops when hvKP or CRKP acquires plasmids that carry either the carbapenem-resistance gene or the virulence gene. Alternatively, classic K. pneumoniae (cKP) may acquire a hybrid plasmid carrying both genes. In this review, we provide an overview of the key antimicrobial resistance mechanisms, virulence factors, clinical presentations, and outcomes associated with CR-hvKP infection. Additionally, we discuss the possible evolutionary processes and prevalence of CR-hvKP in China. Given the wide occurrence of CR-hvKP, continued surveillance and control measures of such organisms should be assigned a higher priority.


Subject(s)
Cross Infection , Humans , Cross Infection/epidemiology , Klebsiella pneumoniae/genetics , China/epidemiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Hospitals
5.
Pharmaceuticals (Basel) ; 16(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37242547

ABSTRACT

Studies of the neurobiological causes of anxiety disorders have suggested that the γ-aminobutyric acid (GABA) system increases synaptic concentrations and enhances the affinity of GABAA (type A) receptors for benzodiazepine ligands. Flumazenil antagonizes the benzodiazepine-binding site of the GABA/benzodiazepine receptor (BZR) complex in the central nervous system (CNS). The investigation of flumazenil metabolites using liquid chromatography (LC)-tandem mass spectrometry will provide a complete understanding of the in vivo metabolism of flumazenil and accelerate radiopharmaceutical inspection and registration. The main goal of this study was to investigate the use of reversed-phase high performance liquid chromatography (PR-HPLC), coupled with electrospray ionization triple-quadrupole tandem mass spectrometry (ESI-QqQ MS), to identify flumazenil and its metabolites in the hepatic matrix. Carrier-free nucleophilic fluorination with an automatic synthesizer for [18F]flumazenil, combined with nano-positron emission tomography (NanoPET)/computed tomography (CT) imaging, was used to predict the biodistribution in normal rats. The study showed that 50% of the flumazenil was biotransformed by the rat liver homogenate in 60 min, whereas one metabolite (M1) was a methyl transesterification product of flumazenil. In the rat liver microsomal system, two metabolites were identified (M2 and M3), as their carboxylic acid and hydroxylated ethyl ester forms between 10 and 120 min, respectively. A total of 10-30 min post-injection of [18F]flumazenil showed an immediate decreased in the distribution ratio observed in the plasma. Nevertheless, a higher ratio of the complete [18F]flumazenil compound could be used for subsequent animal studies. [18F] According to in vivo nanoPET/CT imaging and ex vivo biodistribution assays, flumazenil also showed significant effects on GABAA receptor availability in the amygdala, prefrontal cortex, cortex, and hippocampus in the rat brain, indicating the formation of metabolites. We reported the completion of the biotransformation of flumazenil by the hepatic system, as well as [18F]flumazenil's potential as an ideal ligand and PET agent for the determination of the GABAA/BZR complex for multiplex neurological syndromes at the clinical stage.

6.
Int J Mol Sci ; 24(7)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37047218

ABSTRACT

The androgen-dependent or -independent pathways are regarded as primary therapeutic targets for the neoplasm of the prostate. Mucosa-associated lymphoid tissue 1 (MALT1) acting as a paracaspase in the regulation of nuclear factor κB (NF-κB) signal transduction plays a central role in inflammation and oncogenesis in cancers. This study confirmed the potential linkages between androgen and NF-κB activation by inducing MALT1 in the androgen receptor-full length (ARFL)-positive LNCaP and 22Rv1 prostate cancer cells. Although androgen did not stimulate MALT1 expression in AR-null or ectopic ARFL-overexpressed PC-3 cells, the ectopic overexpression of the AR splicing variant 7 (ARv7) upregulated MALT1 to activate NF-κB activities in 22Rv1 and PC-3 cells. Since the nuclear translocation of p50 and p65 was facilitated by ARv7 to motivate NF-κB activity, the expressions of MALT1, prostate-specific antigen (PSA), and N-myc downstream regulated 1 (NDRG1) were therefore induced in ectopic ARv7-overexpressed prostate cancer cells. Ectopic ARv7 overexpression not only enhanced 22Rv1 or PC-3 cell growth and invasion in vitro but also the tumor growth of PC-3 cells in vivo. These results indicate that an androgen receptor induces MALT1 expression androgen-dependently and -independently in ARFL- or ARv7-overexpressed prostate cancer cells, suggesting a novel ARv7/MALT1/NF-κB-signaling pathway may exist in the cells of prostate cancer.


Subject(s)
Carcinoma , Prostatic Neoplasms , Male , Humans , NF-kappa B/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Androgens/pharmacology , Androgens/metabolism , Prostate/pathology , Cell Line, Tumor , Prostatic Neoplasms/metabolism , Lymphoid Tissue/metabolism , Carcinoma/metabolism , Mucous Membrane/metabolism
7.
Poult Sci ; 102(6): 102622, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37019074

ABSTRACT

The anti-inflammatory role of lutein has been widely recognized, however, the underlying mechanism is still not fully elucidated. Hence, the effects of lutein on the intestinal health and growth performance of broilers and the action of mechanism were investigated. 288 male yellow-feathered broilers (1-day old) were randomly allocated to 3 treatment groups with 8 replicates of 12 birds each, and the control group was fed a broken rice-soybean basal diet, while the test groups were fed a basal diet added with 20 mg/kg and 40 mg/kg of lutein (LU20, LU40), respectively. The feeding trial lasted for 21 d. The results showed that 40 mg/kg lutein supplementation tended to increase ADFI (P = 0.10) and ADG (P = 0.08) of broilers. Moreover, the addition of lutein caused a decreasing trend of gene expression and concentration of proinflammatory cytokines IL-1ß (P = 0.08, P = 0.10, respectively) and IL-6 (P = 0.06, P = 0.06, respectively) and also tended to decrease the gene expression of TLR4 (P = 0.09) and MyD88 (P = 0.07) while increasing gene expression and concentration of anti-inflammatory cytokines IL-4 and IL-10 (P < 0.05) in the jejunum mucosa of broilers. Additionally, lutein supplementation increased the jejunal villi height of broilers (P < 0.05) and reduced villi damage. The experiment in vitro showed that lutein treatment reduced the gene expression of IL-1ß, IL-6, and IFN-γ in chicken intestinal epithelial cells (P < 0.05). However, this effect was diminished after knock-down of TLR4 or MyD88 genes using RNAi technology. In conclusion, lutein can inhibit the expression and secretion of proinflammatory cytokines in the jejunum mucosa and promote intestinal development of broilers, and the anti-inflammatory effect may be achieved by regulating TLR4/MyD88 signaling pathway.


Subject(s)
Chickens , Toll-Like Receptor 4 , Male , Animals , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Chickens/physiology , Myeloid Differentiation Factor 88 , Lutein/pharmacology , Lutein/metabolism , Interleukin-6/metabolism , Diet/veterinary , Signal Transduction , Cytokines/metabolism , Cell Differentiation , Animal Feed/analysis
8.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36986516

ABSTRACT

Clinical studies have demonstrated that the γ-aminobutyric acid type A (GABAA) receptor complex plays a central role in the modulation of anxiety. Conditioned fear and anxiety-like behaviors have many similarities at the neuroanatomical and pharmacological levels. The radioactive GABA/BZR receptor antagonist, fluorine-18-labeled flumazenil, [18F]flumazenil, behaves as a potential PET imaging agent for the evaluation of cortical damage of the brain in stroke, alcoholism, and for Alzheimer disease investigation. The main goal of our study was to investigate a fully automated nucleophilic fluorination system, with solid extraction purification, developed to replace traditional preparation methods, and to detect underlying expressions of contextual fear and characterize the distribution of GABAA receptors in fear-conditioned rats by [18F]flumazenil. A carrier-free nucleophilic fluorination method using an automatic synthesizer with direct labeling of a nitro-flumazenil precursor was implemented. The semi-preparative high-performance liquid chromatography (HPLC) purification method (RCY = 15-20%) was applied to obtain high purity [18F]flumazenil. Nano-positron emission tomography (NanoPET)/computed tomography (CT) imaging and ex vivo autoradiography were used to analyze the fear conditioning of rats trained with 1-10 tone-foot-shock pairings. The anxiety rats had a significantly lower cerebral accumulation (in the amygdala, prefrontal cortex, cortex, and hippocampus) of fear conditioning. Our rat autoradiography results also supported the findings of PET imaging. Key findings were obtained by developing straightforward labeling and purification procedures that can be easily adapted to commercially available modules for the high radiochemical purity of [18F]flumazenil. The use of an automatic synthesizer with semi-preparative HPLC purification would be a suitable reference method for new drug studies of GABAA/BZR receptors in the future.

9.
Article in English | MEDLINE | ID: mdl-36767763

ABSTRACT

Soothing dolls are becoming increasingly popular in a society with a lot of physical and mental stress. Many products are also combined with soothing dolls to stimulate consumers' desire for impulse buying. However, there is no research on the relationship between consumers' purchasing behavior, consumers' preference for soothing dolls, and visual preference. The purpose of this study was to examine the possible factors that affect the emotional and visual preferences of soothing dolls. Two local stores' sales lists were used to extract three different types of dolls. The 2D and 3D versions of these three dolls were used. Subjective emotional preferences were examined by the self-assessment manikin (SAM) scale, with 5-point Likert scales for valence and arousal factors. An eye tracker was used to examine visual preferences, both before and after positive/negative emotion stimulation by the International Affective Picture System (IAPS). There were 37 subjects involved, with an age range of 20-28 years. The experimental results show that the average valence/arousal scores for 2D/3D dolls were (3.80, 3.74) and (2.65, 2.68), respectively. There was no statistical difference, but both 2D and 3D pictures had high valence scores. Eye tracker analysis revealed no gaze difference in visual preference between 2D and 3D dolls. After negative emotional picture stimulation, the observation time of the left-side doll decreased from 2.307 (std 0.905) to 1.947 (std 1.038) seconds, p < 0.001; and that of the right-side picture increased from 1.898 (std 0.907) to 2.252 (std 1.046) seconds, p < 0.001. The average observation time ratio of the eye on the 3D doll was 40.6%, higher than that on the 2D doll (34.3%, p = 0.02). Soothing dolls may be beneficial for emotion relaxation. Soothing dolls always have high valence features according to the SAM evaluation's measurement. Moreover, this study proposes a novel research model using an eye-tracker and the SAM for the SOR framework.


Subject(s)
Stress, Psychological , Adult , Humans , Young Adult , Arousal/physiology , Emotions/physiology , Photic Stimulation , Stress, Physiological , Stress, Psychological/prevention & control
10.
Nanoscale ; 15(7): 3375-3386, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36722930

ABSTRACT

In this study, we demonstrate inverted PTB7:PC71BM polymer solar cells (PSCs) featuring a solution-processed s-MoO3 hole transport layer (HTL) that can, after thermal aging at 85 °C, retain their initial power conversion efficiency (PCE) for at least 2200 h. The T80 lifetimes of the PSCs incorporating the novel s-MoO3 HTL were up to ten times greater than those currently reported for PTB7- or low-band-gap polymer:PCBM PSCs, the result of the inhibition of burn-in losses and long-term degradation under various heat-equivalent testing conditions. We used X-ray photoelectron spectroscopy (XPS) to study devices containing thermally deposited t-MoO3 and s-MoO3 HTLs and obtain a mechanistic understanding of how the robust HTL is formed and how it prevented the PSCs from undergoing thermal degradation. Heat tests revealed that the mechanisms of thermal inter-diffusion and interaction of various elements within active layer/HTL/Ag electrodes controlled by the s-MoO3 HTL were dramatically different from those controlled by the t-MoO3 HTL. The new prevention mechanism revealed here can provide the conceptual strategy for designing the buffer layer in the future. The PCEs of PSCs featuring s-MoO3 HTLs, measured in damp-heat (65 °C/65% RH; 85 °C per air) and light soaking tests, confirmed their excellent stability. Such solution-processed MoO3 HTLs appear to have great potential as replacements for commonly used t-MoO3 HTLs.

11.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835185

ABSTRACT

[99mTc]Tc TRODAT-1 is a widely used single photon emission tomography (SPECT) radiopharmaceutical in Asian practice for early detection of central dopaminergic disorders. However, its imaging quality remains sub-optimal. To overcome this problem, mannitol, an osmotic agent was used to observe its effect on improving striatal [99mTc]Tc TRODAT-1 uptake in rat brain by titrated human dosages to investigate a clinically feasible way to improve human imaging quality. [99mTc]Tc TRODAT-1 synthesis and quality control were performed as described. Sprague-Dawley rats were used for this study. The animal in vivo nanoSPECT/CT and ex vivo autoradiography were employed to observe and verify the striatal [99mTc]Tc TRODAT-1 uptake in rat brains using clinically equivalent doses (i.e., 0, 1 and 2 mL groups, each n = 5) of mannitol (20% w/v, equivalent to 200 mg/mL) by an intravenous administration. Specific binding ratios (SBRs) were calculated to express the central striatal uptake in different experimental groups. In the NanoSPECT/CT imaging, the highest SBRs of striatal [99mTc]Tc TRODAT-1 were reached at 75-90 min post-injection. The averaged striatal SBRs were 0.85 ± 0.13 (2 mL normal saline, the control group), 0.94 ± 0.26 (1 mL mannitol group) and 1.36 ± 0.12 (2 mL mannitol group, p < 0.01 which were significantly different than the control as well as 1 mL mannitol groups (p < 0.05). The SBRs from ex vivo autoradiography also showed a comparable trend of the striatal [99mTc]Tc TRODAT-1 uptake in the 2 mL, 1 mL mannitol and the control groups (1.76 ± 0.52, 0.91 ± 0.29, and 0.21 ± 0.03, respectively, p < 0.05). No remarkable changes of vital signs were found in the mannitol groups and the controls. Pre-treated mannitol revealed a significant increase of the central striatal [99mTc]Tc TRODAT-1 uptake in a rat model which not only enabled us to perform pre-clinical studies of dopaminergic related disorders but also provided a potential way to further optimize image quality in clinical practice.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Organotechnetium Compounds , Humans , Rats , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Rats, Sprague-Dawley , Tropanes , Tomography, Emission-Computed, Single-Photon/methods , Dopamine/metabolism , Radiopharmaceuticals , Models, Animal
12.
J Spinal Cord Med ; 46(5): 798-806, 2023 09.
Article in English | MEDLINE | ID: mdl-35792817

ABSTRACT

PURPOSE: Warm acupuncture (WA) therapy has been applied to treat spinal cord injury (SCI), but the underlying mechanism is unclear. The current study attempted to explore the WA therapy on neuronal apoptosis of SCI and the relationship with the extracellular signal-regulated kinase (ERK) signaling pathway. METHODS: The rat SCI models were established by the impact method. SCI rat models were subjected to WA treatment at Dazhui (GV14) and Jiaji points (T10), Yaoyangguan (GV3), Zusanli (ST36), and Ciliao (BL32). The rat SCI models were established by the impact method. WA and U0126 treatments were performed on the SCI rats. Motor function and neuronal apoptosis were detected. The relative mRNA of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), the phosphorylation level of ERK 1/2 and levels of B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), and caspase-3 in spinal cord tissue were tested. RESULTS: After WA treatment, the Basso, Beattie & Bresnahan locomotor rating scale (BBB scale) of SCI rats in the WA treatment was significantly raised from 7 to 14 days after SCI. WA and U0126 treatment significantly diminished apoptotic cells and preserved the neurons in the injured spinal cord. WA and U0126 treatment alleviated the production of inflammatory cytokines in the spinal cord. The distinct increase of p-ERK 1/2 induced by SCI was reversed in WA and U0126 treatment groups. WA and U0126 treatment augmented the level of Bcl-2 and reversed the elevated cleaved caspase-3 protein level after SCI. CONCLUSION: Our study demonstrated that WA might be associated with the downregulation of the ERK signaling pathway. In summary, our findings indicated that WA promotes the recovery of SCI via the protection of nerve cells and the prevention of apoptosis. Meanwhile, the anti-apoptotic effect of WA might be associated with the downregulation of the ERK signaling pathway, which could be one of the mechanisms of WA in the treatment of SCI.


Subject(s)
Acupuncture Therapy , Spinal Cord Injuries , Animals , Rats , Apoptosis , Caspase 3/metabolism , Caspase 3/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology , Rats, Sprague-Dawley , Recovery of Function/physiology , Signal Transduction , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy
13.
Article in English | WPRIM (Western Pacific) | ID: wpr-966405

ABSTRACT

Activation of the NLRP3 inflammasome is a necessary process to induce fibrosis in nonalcoholic fatty liver disease (NAFLD). Nonalcoholic steatohepatitis (NASH) is a kind of NAFLD that encompasses the spectrum of liver disease. It is characterized by inflammation and ballooning of hepatocytes during steatosis. We tested whether inhibiting the NLRP3 inflammasome could prevent the development and pathology of NASH. We identified loganin as an inhibitor of the NLRP3 inflammasome and investigated whether in vivo administration of loganin prevented NASH symptoms using a methionine-choline deficient (MCD) diet model in mice. We found that loganin inhibited the NLRP3 inflammasome activation triggered by ATP or nigericin, as shown by suppression of the production of interleukin (IL)-1β and caspase-1 (p10) in mouse primary macrophages. The speck formation of apoptosisassociated speck-like protein containing a caspase recruitment domain (ASC) was blocked by loganin, showing that the assembly of the NLRP3 inflammasome complex was impaired by loganin. Administration of loganin reduced the clinical signs of NASH in mice fed the MCD diet, including hepatic inflammation, fat accumulation, and fibrosis. In addition, loganin reduced the expression of NLRP3 inflammasome components in the liver. Our findings indicate that loganin alleviates the inflammatory symptoms associated with NASH, presumably by inhibiting NLRP3 inflammasome activation. In summary, these findings imply that loganin may be a novel nutritional and therapeutic treatment for NASH-related inflammation.

14.
Life (Basel) ; 12(12)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36556499

ABSTRACT

BACKGROUND: Understanding balance ability and assessing the risk of possible falls are very important for elderly rehabilitation. The Mini-Balanced Evaluation System Test (Mini-BESTest) is an important survey for older adults to evaluate subject balance, but it is not easy to complete due to various limitations of physical activities, including occasional fear of injury. A center of pressure (CoP) signal can be extracted from a force pressure plate with a short recording time, and it is relatively achievable to ask subjects to stand on a force pressure plate in a clinical environment. The goal of this study is to estimate the cutoff score of Mini-BESTest scores from CoP data. METHODS: CoP signals from a human balance evaluation database with data from 75 people were used. Time domain, frequency domain, and nonlinear domain parameters of 60 s CoP signals were extracted to classify different cutoff point scores for both linear regression and a decision tree algorithm. Classification performances were evaluated by accuracy and area under a receiver operating characteristic curve. RESULTS: The correlation coefficient between real and estimated Mini-BESTest scores by linear regression is 0.16. Instead of linear regression, binary classification accuracy above or below a cutoff point score was developed to examine the CoP classification performance for Mini-BESTest scores. The decision tree algorithm is superior to regression analysis among scores from 16 to 20. The highest area under the curve is 0.76 at a cutoff point score of 21 for the CoP measurement condition of eyes opened on the foam, and the corresponding classification accuracy is 76.15%. CONCLUSIONS: CoP measurement is a potential tool to estimate corresponding balance and fall survey scores for elderly rehabilitation and is useful for clinical users.

15.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232736

ABSTRACT

The WNT1 inducible signaling pathway protein 1 (WISP1), a member of the connective tissue growth factor family, plays a crucial role in several important cellular functions in a highly tissue-specific manner. Results of a RT-qPCR indicated that WISP1 expressed only in cells of the human prostate fibroblasts, HPrF and WPMY-1, but not the prostate carcinoma cells in vitro. Two major isoforms (WISP1v1 and WISP1v2) were identified in the HPrF cells determined by RT-PCR and immunoblot assays. The knock-down of a WISP1 blocked cell proliferation and contraction, while treating respectively with the conditioned medium from the ectopic WISP1v1- and WISPv2-overexpressed 293T cells enhanced the migration of HPrF cells. The TNFα induced WISP1 secretion and cell contraction while the knock-down of WISP1 attenuated these effects, although TNFα did not affect the proliferation of the HPrF cells. The ectopic overexpression of WISP1v1 but not WISP1v2 downregulated the N-myc downstream regulated 1 (NDRG1) while upregulating N-cadherin, slug, snail, and vimentin gene expressions which induced not only the cell proliferation and invasion in vitro but also tumor growth of prostate carcinoma cells in vivo. The results confirmed that WISP1 is a stroma-specific secreting protein, enhancing the cell migration and contraction of prostate fibroblasts, as well as the proliferation, invasion, and tumor growth of prostate carcinoma cells.


Subject(s)
CCN Intercellular Signaling Proteins , Cell Transformation, Neoplastic , Fibroblasts , Prostatic Neoplasms , Proto-Oncogene Proteins , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Cadherins , Carcinoma/metabolism , Carcinoma/pathology , Cell Proliferation/genetics , Cell Proliferation/physiology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Connective Tissue Growth Factor , Culture Media, Conditioned/pharmacology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Male , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , Vimentin/metabolism
16.
Poult Sci ; 101(12): 102191, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36272232

ABSTRACT

Broilers are frequently exposed to various immunological stresses, which lead to intestinal damage, weakened immunity, and even growth retardation. Lutein, as a kind of carotenoid, possesses antioxidant and immunomodulatory functions. Therefore, this study was conducted to investigate the effects of lutein on jejunal mucosal barrier function and inflammatory responses of yellow-feather broilers challenged with lipopolysaccharide (LPS). A total of two hundred eight-eight 1-day-old yellow-feather broilers were randomly allocated to 3 groups with 8 replicate cages containing 12 birds each. Birds were fed broken-rice-soybean basal diet containing 0, 20 and 40 mg/kg lutein (CON, LU20 and LU40) for 26 d. On days 21, 23, and 25 of the trial, broilers were intraperitoneally injected with LPS (1 mg/kg body weight). The results showed that, compared with CON group, LU40 supplementations significantly increased the average daily gain (ADG) of broilers at 1 to 21 and 22 to 26 d of age (P < 0.05), significantly decreased the ratio of feed to gain (F/G) of broilers at 22 to 26 d of age (P < 0.05). LU20 and LU40 supplementations increased goblet cell density in jejunum of broilers under LPS challenge, and LU20 supplementation elevated the villus area (P < 0.05). Scanning electron microscopy of jejunal mucosa revealed significant villi damage, while transmission electron microscopy demonstrated severe enterocyte damage and loss of cellular integrity in CON group. In particular, mitochondria were morphologically altered, appearing irregular or swollen. Apical junctional complexes between adjacent enterocytes were obviously shorter and saccular in CON group. LU20 and LU40 supplementations increased the mRNA expressions of Occludin, Claudin-1, and ZO-1 in the jejunal mucosa of broilers under LPS challenge (P < 0.05), restrained TLR4/MyD88/NF-κB pathway activation in the jejunal mucosa, decreased the mRNA expressions of IL-1ß and IL-6, and strengthened the mRNA expressions of IL-4 and IL-10 (P < 0.05). Meanwhile, the protein expressions of p38 and JNK in LU40 group were lower than CON group (P < 0.05). It can be concluded that 40 mg/kg lutein supplementation improved LPS-induced jejunal mucosal barrier function and tamed inflammation of yellow-feather broilers.


Subject(s)
Lipopolysaccharides , Lutein , Animals , Lipopolysaccharides/toxicity , Chickens/physiology , Jejunum , Animal Feed/analysis , Feathers , Dietary Supplements/analysis , Diet/veterinary , RNA, Messenger
17.
Sci Rep ; 12(1): 14842, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050420

ABSTRACT

This paper describes a simple electrospinning approach for fabricating poly(3-hexylthiophene) (P3HT)/poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) semiconductive nanofiber mat triboelectric nanogenerators (TENGs). Measurements of the electrical properties of the P3HT/PVDF-HFP semiconductive nanofiber TENGs revealed that the output voltage could be enhanced up to 78 V with an output current of 7 µA. The output power of the device reached 0.55 mW, sufficient to power 500 red light-emitting diodes instantaneously, as well as a digital watch. The P3HT/PVDF-HFP semiconductive nanofiber TENG could be used not only as a self-powered device but also as a sensor for monitoring human action. Furthermore, it displayed good durability when subjected to 20,000 cycles of an external force test.

18.
Antioxidants (Basel) ; 11(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36009228

ABSTRACT

Functions of metallothionein 2A (MT2A) in bladder cancer have not been extensively explored even though metallothioneins are regarded as modulators in several biological regulations including oxidation and cancerous development. We evaluated MT2A in bladder carcinoma cells in terms of the mechanisms of regulation and the underlying functions. MT2A overexpression not only downregulated endogenous ROS but also blocked ROS induced by H2O2. We used the annexin V-FITC apoptosis assay to determine the modulation of H2O2-induced cell apoptosis by MT2A expression. Results of immunoblot and reporter assays indicated that caffeic acid phenethyl ester (CAPE) treatment induced MT2A and heme oxygenase-1 (HO-1) expressions; moreover, the involvement of CAPE in either upregulation of the HO-1 expression or downregulation of endogenous ROS is MT2A dependent in bladder carcinoma cells. Knockdown of MT2A increased invasion and cell growth in vitro and in vivo, whereas ectopic overexpression of MT2A had the reverse effect in bladder carcinoma cells. Unlike bladder cancer tissues, the real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) analysis showed a significant level of MT2A mRNA in the normal bladder tissues. Collectively, our results indicated that MT2A is acting as an antioxidant and also a tumor suppressor in human bladder carcinoma cells.

19.
Sensors (Basel) ; 22(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36015715

ABSTRACT

Electromyograms (EMG signals) may be contaminated by electrocardiographic (ECG) signals that cannot be easily separated with traditional filters, because both signals have some overlapping spectral components. Therefore, the first challenge encountered in signal processing is to extract the ECG noise from the EMG signal. In this study, the EMG, mixed with different degrees of noise (ECG), is simulated to investigate the variations of the EMG features. Simulated data were derived from the MIT-BIH Noise Stress Test (NSTD) Database. Two EMG and four ECG data were composed with four EMG/ECG SNR to 32 simulated signals. Following Pan-Tompkins R-peak detection, four ECG removal methods were used to remove ECG with different compensation algorithms to obtain the denoised EMG signal. A total of 13 time-domain and four frequency-domain EMG features were calculated from the denoised EMG. In addition, the similarity of denoised EMG features compared to clean EMG was also evaluated. Our results showed that with the ratio EMG/ECG SNR = 10 and 20, the ECG can be almost ignored, and the similarity of EMG features is close to 1. When EMG/ECG SNR = 1 and 2, there is a large variation of EMG features. The results of our simulation study would be beneficial for understanding the variations of EMG features upon the different EMG/ECG SNR.


Subject(s)
Electrocardiography , Signal Processing, Computer-Assisted , Algorithms , Artifacts , Electrocardiography/methods , Electromyography/methods , Signal-To-Noise Ratio
20.
Research (Wash D C) ; 2022: 9852518, 2022.
Article in English | MEDLINE | ID: mdl-35958113

ABSTRACT

Conventional methods of drug design require compromise in the form of side effects to achieve sufficient efficacy because targeting drugs to specific organs remains challenging. Thus, new strategies to design organ-specific drugs that induce little toxicity are needed. Based on characteristic tissue niche-mediated drug distribution (TNMDD) and patterns of drug metabolism into specific intermediates, we propose a strategy of distribution- and metabolism-based drug design (DMBDD); through a physicochemical property-driven distribution optimization cooperated with a well-designed metabolism pathway, SH-337, a candidate potassium-competitive acid blocker (P-CAB), was designed. SH-337 showed specific distribution in the stomach in the long term and was rapidly cleared from the systemic compartment. Therefore, SH-337 exerted a comparable pharmacological effect but a 3.3-fold higher no observed adverse effect level (NOAEL) compared with FDA-approved vonoprazan. This study contributes a proof-of-concept demonstration of DMBDD and provides a new perspective for the development of highly efficient, organ-specific drugs with low toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...